Подавляющее большинство мутаций снижает жизнеспособность мутантных особей, чем пытаются объяснить массовое вымирание видов прежней фауны и флоры; общее усиление мутационного процесса, по мысли Шиндевольфа, приводит к возникновению и быстрому распространению новых форм. При этом сразу возникают новые типы организации путем крупных мутаций, так сказать, скачкообразно. В качестве причины такого "мутационного взрыва" Шиндевольф привлекает повышение уровня жесткой космической радиации в результате вспышки Сверхновой звезды на достаточно близком расстоянии от Солнца. К сожалению, эта концепция не может объяснить ни одного конкретного случая изменений фауны и флоры: почему вымерли одни группы организмов, а выжили и преуспели другие, прежде сосуществовавшие с первыми? В сущности, концепция "мутационного взрыва" просто подменяет анализ конкретных ситуаций постулированием универсальной причины для объяснения любого крупномасштабного эволюционного изменения. Совершенно несостоятельно привлечение крупных мутаций для объяснения значительных и быстрых преобразований организмов При вспышках новых звезд выделяется энергия до 10 538 0 Дж. Те звезды, которые неудачно называют новыми на самом деле существуют и до вспышки. Это горячие карликовые звезды, которые вдруг за короткий срок (от суток до ста дней) увеличивают свою светимость на много звездных величин, после чего медленно, иногда на протяжении многих лет, возвращаются к своему первоначальному состоянию. При вспышках новых звезд из их атмосфер со скоростью 1000 км/с выбрасываются внешние газовые оболочки массой в тысячи раз меньшей масс Солнца. Ежегодно в галактике вспыхивает не менее 200 новых звезд, но из них мы замечаем лишь 2/3. Установлено, что новые звезды - горячие звезды в тесных двойных системах, где вторая звезда гораздо холоднее первой. Именно двойственность и является в конечном счете причиной вспышки новой звезды. В тесных двойных системах происходит обмен газовым веществом между компонентами. Если на горячую звезду при этом попадает большое количество водорода со второй звезды, это приводит к мощному взрыву, и на Земле наблюдатели регистрируют вспышку новой звезды.
Человек - удивительно беспокойное существо. Мы еще не создали цивилизации будущего, мы еще основательно заняты повседневными и порою достаточно неприятными делами, а уже беспокоимся о том, что будет, когда мы освободимся от них. Еще семьдесят лет тому назад К. Э. Циолковский предположил, что со временем человечество "колонизует" все околосолнечное пространство. Тогда эта мысль казалась чистой фантазией. Теперь она подвергается дальнейшей разработке. Сейчас ученые говорят о возможном создании искусственных сверхновых звезд, искусственных планет, приспособлении к жизни и заселении старых, извлечении из мирового пространства недостающей энергии, многократное продлении срока человеческой жизни, установлении контактов с братьями по разуму. Это сделают не роботы, а люди. Роботы будут только "давать им консультации" и исполнять их приказания. В свое время В. Франклин определил человека как животное, делающее орудия. Это определение начинает устаревать. Скоро настоятельно потребуются другие. Вот одно из них, может быть нечетко сформулированное, но в принципе отвечающее новому масштабу человеческих дел
Температура внутри звезды будет уменьшаться, будет снижаться давление и иссякнут возможности сопротивляться гравитации. Ядро звезды, состоящее теперь уже только из гелия, начинает сжиматься, образуя плотную, горячую область. Теперь термоядерная реакция будет протекать на периферии звезды, где еще сохранился водород. В это время размер звезды и ее светимость увеличиваются. В результате она превращается в красного гиганта. Температура гелиевого ядра возрастает, и начинается новая ядерная реакция превращения гелия в углерод. В зависимости массы звезды от массы Солнца после всего этого цикла она превращается либо в белого карлика - заключительный этап эволюции звезд, либо наступает гравитационный коллапс - вспышка сверхновой звезды, либо обра 136 зуется черная дыра - сфера, из которой не могут выйти ни частицы, ни какое-либо излучение ввиду того, что очень велико поле тяготения внутри нее. В 1963 г. открыты квазары - астрономические тела, находящиеся вне пределов Галактики. В 1965 г. американские астрономы А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) обнаружили фоновое радиоизлучение
Это отличие связано с тем, что атмосферы гигантов обширнее и разреженнее. Точность определения расстояния таким способом составляет ~20%. По относительным скоростям. Косвенным показателем расстояния до звезд являются их относительные скорости: как правило, чем ближе звезда, тем больше смещается она по небесной сфере. Определить таким способом расстояние, конечно нельзя, но этот способ дает возможность “вылавливать” близкие звезды. Также существует другой метод определения расстояний по скоростям, применимый для звездных скоплений. Он основан на том, что все звезды, принадлежащие одному скоплению движутся в одном и том напрвлении по параллельным траекториям. Измерив лучевую скорость звезд с помощью эффекта Доплера, а также скорость, с которой эти звезды смещаются относительно очень удаленных, то есть условно неподвижных звезд, можно определить расстояние до интересующего нас скопления. Расстояния до галактик приблизительно можно определить по расстоянию до находящихся в этих галактиках цефеид. Цефеиды. Периодические изменения блеска характерны не только для двойных звезд, но и для переменных звезд — так называемых “цефеид”. ![]() Изготовлены из влагостойкого и грязестойкого материала, сохраняющего свои свойства в любых погодных условиях. Легкость крепления позволяет 66 руб Раздел: Прочее ![]() Ваши дети во время приёма пищи вечно проливают что-то на ковёр и пол, пачкают руки, а Вы потом тратите уйму времени на выведение пятен с 222 руб Раздел: Тарелки ![]() Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и 7 руб Раздел: Горшки, ящики для рассады Звезды Основные звездные характеристики Светимость и расстояние до звезд Прежде всего надо понять, что звезды, за редчайшим исключением, наблюдаются как "точечные" источники излучения. Это означает, что их угловые размеры очень малы. Даже в самые большие телескопы нельзя увидеть звезды в виде "реальных" дисков. Подчеркиваю слово "реальных", так как благодаря чисто инструментальным эффектам, а главным образом неспокойностью атмосферы, в фокальной плоскости телескопов получается "ложное" изображение звезды в виде диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны быть меньше одной сотой доли секунды дуги. Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, "разрешена". Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является звездная величина. Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например 8, 10. Температура Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым "показателем цвета", равным разности фотографической и визуальной и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра. У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, C , СП, Н20 и др.). По мер увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия.
|