(495)
105 99 23



оплата и доставка

оплата и доставка char.ru



Книги интернет магазинКниги
Рефераты Скачать бесплатноРефераты

РЕФЕРАТЫ РЕФЕРАТЫ

Разлел: Психология, Общение, Человек Разлел: Психология, Общение, Человек

Решение транспортной задачи методом потенциалов

найти еще ...
Решение задач методом составления уравнений ЁЁ Медиа Орехов Ф.А.
Цель настоящего пособия - помочь начинающим учителям в выборе методов обучения по решению задач.
1480 руб -5% 1406 руб
Решение волновых задач сейсмостойкости методом граничных элементов Нобель Пресс С.П. Г.
Наряду с фундаментальным решением уравнений динамической теории упругости используется аналогичное решение в полуплоскости (сингулярное решение).
400 руб

Содержание. 1. Линейная транспортная задача 2. Составление опорного плана 3. Метод потенциалов 3. Список использованной литературы 1. Транспортная задача. Транспортная задача ставится следующим образом: имеется m пунктов отправления, в которых сосредоточены запасы каких-то однородных грузов. Имеется пунктов назначения подавшие заявки соответственно на груза. Известны стоимости р i j перевозки единицы груза от каждого пункта отправления до каждого пункта назначения. Все числа р i j, образующие прямоугольную таблицу заданы. Требуется составить такой план перевозок (откуда, куда и сколько единиц поставить), чтобы все заявки были выполнены, а общая стоимость всех перевозок была минимальна. Далее, предполагается, что где bi есть количество продукции, находящееся на складе i, и aj – потребность потребителя j. Замечание. Если то количество продукции, равное остается на складах. В этом случае мы введем "фиктивного" потребителя 1 с потребностью и положим транспортные расходы pi, 1 равными 0 для всех i. Если то потребность не может быть покрыта. В этом случае начальные условия должны быть изменены таким образом, чтобы потребность в продукции могла быть обеспечена. Обозначим через xij количество продукции, поставляемое со склада i потребителю j. В предложении (1) нам нужно решить следующую задачу (математическая модель транспортной задачи): Cумма элементов строки i должна быть равна bi, а сумма элементов столбца j должна быть равна aj, и все должны быть неотрицательными. Пример 1. Такие задачи целесообразно решать при помощи особого варианта симплекс-метода – так называемого метода потенциалов. Все транспортные задачи имеют оптимальное решение. Если все значение aj и bi в условиях транспортной задачи целочисленные, то переменные xij во всех базисных решениях (а так же и в любом оптимальном базисном решении) имеют целочисленные значения. 2. Составление опорного плана. Решение транспортной задачи начинается с нахождения опорного плана. Для этого существуют различные способы, рассмотрим простейший, так называемый способ северо-западного угла. Пояснить его проще всего будет на конкретном примере: Условия транспортной задачи заданы транспортной таблицей. Минимальный элемент –7 ? (?, ?) = (2,5). Кроме ячейки (?, ?) транспортной таблицы, мы пометим значками – и другие занятые числами ячейки таким образом, чтобы в каждой строке и в каждом столбце транспортной таблицы число знаков было равно числу знаков -. Это всегда можно сделать единственным образом, причем в каждой строке и в каждом столбце будет содержаться максимум по одному знаку = и по одному знаку -. Знак поставлен в ячейке (2,5). Соответственно в последнем столбце должен быть поставлен знак -, это можно сделать только в ячейке (3,5). Следовательно, знак должен быть поставлен в последней строке. В ячейке с числом 10 этого сделать нельзя, так как тогда в соответствующем столбце не было бы знака -, и д.т. Затем мы определяем минимум М из всех элементов, помеченных знаком -, и выбираем ячейку (?, ?), где этот минимум достигается. В нашем примере с М = 5 можно выбрать (?, ?) = (2, 3); при этом (?, ?) определяет базисное переменное, которое должно стать свободным, т.е. базисное переменное, соответствующее индексу разрешающей строки симплекс – метода.

Поиск Философия для аспирантов

Идеализация, как особый прием познания, имеет большое значение в теоретическом исследовании. Но она имеет и предел своих возможностей. Каждая идеализация создается для решения конкретной задачи. Метод идеализированных объектов без привязки к конкретной проблеме обеспечит прямую дорогу к заблуждению. Кроме того, далеко не всегда можно обеспечить переход от идеализированного объекта к эмпирическому объекту. 2.PФормализация Этот прием заключается в построении абстрактных моделей, с помощью которых исследуются реальные объекты. Формализация обеспечивает возможность оперировать знаками, формулами. Вывод одних формул из других но правилам логики и математики позволяет установить такие теоретические закономерности, которые не могли быть открыты эмпирическим путем. Формализация играет существенную роль в анализе и уточнении научных понятий. В научном познании подчас нельзя не только разрешить, но даже сформулировать проблему, пока не будут уточнены относящиеся к ней понятия. 425 3.PАксиоматический метод Это способ производства нового знания, когда в основу его закладываются аксиомы, из которых все остальные утверждения выводятся чисто логическим путем с последующим описанием этого вывода

Реферат: Методы решения транспортных задач Методы решения транспортных задач

Поиск Большая Советская Энциклопедия (ОП)

Эти константы однозначно определяют показатель преломления среды: n = .   Феноменологическая волновая О., оставляющая в стороне вопрос о связи величин e и m (обычно известных из опыта) со структурой вещества, позволяет объяснить все эмпирические законы геометрической О. и установить границы её применимости. В отличие от геометрической, волновая О. даёт возможность рассматривать процессы распространения света не только при размерах формирующих или рассеивающих световые пучки систем >>l(длины волны света) но и при любом соотношении между ними. Во многих случаях решение конкретных задач методами волновой О. оказывается чрезвычайно сложным. Поэтому получила развитие квазиоптика (особенно применительно к наиболее длинноволновому участку спектра оптического излучения и смежному с ним т. н. субмиллиметровому поддиапазону радиоизлучения) в которой процессы распространения, преломления и отражения описываются геометрооптически но в которой при этом нельзя пренебрегать и волновой природой излучения. Геометрический и волновой подходы формально объединяются в геометрической теории дифракции, в которой дополнительно к падающим, отражённым и преломлённым лучам геометрической О. постулируется существование различного типа дифрагированных лучей.   Огромную роль в развитии волновой О. сыграло установление связи величин e и m с молекулярной и кристаллической структурой вещества (см

Реферат: Решение задач линейной оптимизации симплекс – методом Решение задач линейной оптимизации симплекс – методом

Вычислительную основу этих двух способов решения составляют соответственно первый и второй алгоритмы симплекс-метода. Один из параметров, по которому может быть оценен любой итерационный алгоритм – количество шагов, приводящих к решению задачи или установлению ее неразрешимости. Для данной задачи наиболее эффективным методом оказался первый метод(L-задача исходная задача), т.к. он привел к решению за 4 шага, а второй метод (M-задача) за 5 шагов. Разница в числе шагов, вероятно, обусловлена неоднозначность выбора разрешающего элемента в исходной таблице L-задачи (3.2.1). Сравнение количества вычислений на каждой итерации приводит к следующим оценочным результатам рассматриваемых алгоритмов. Преимущественная часть вычислений на каждом шаге алгоритмов определяется размерностью главной части таблицы (в первом алгоритме) или основной таблицы (во втором алгоритме). В первом случае она имеет размерность (m 1)x( 1), во втором - (m 1)x(m 1). Даже учитывая, что второй алгоритм требует построения вспомогательной таблицы, он оказывается более компактным.

Поиск Авиация и космонавтика 1997 11-12

С этими же двигателями планировалось закончить и следующие четыре самолета, получивших обозначение с С 014 по С 017. Тем временем РЛМ решил прекратить дальнейшие работы по дизельным двигателям "Юнкерса" из-за проблем с их обслуживанием и топливом. Между "Блом унд Фосс" и РЛМ завязалась длительная дискуссия по поводу: какие двигатели должны заменить дизели на четырех оставшихся лодках. "Блом унд Фосс" полагала установить четыре-шесть BMW 801, воскресив тем самым предложение еще 1939 г проектов "97" с шестью BMW 801 и "98" с четыремя BMW 801, но РЛМ твердо стояло на выделения этих двигателей более приоритетным машинам. Таким образом "Блом унд Фосс" ничего не оставалось, как вернуться к "Фафниру"-323Я-2, а лодки получили обозначение BV 222Е. В конце концов программа производства закончилась в начале 1944 г, "Блом унд Фосс" получила указание переключиться на более нужные самолеты, и уже заложенные BV 222 были отправлены на слом. По мере ухудшения ситуации в войне оставшиеся BV 222 постепенно переключались на решение транспортных задач. Эскадрилья 1. (F) /SAGr. 129 была расформирована в июле 1944 г

Реферат: Решение транспортной задачи Решение транспортной задачи

Совок №5.
Длина совка: 22 см. Цвет в ассортименте, без возможности выбора.
19 руб
Раздел: Совки
Гуашь "Классика", 12 цветов.
Гуашевые краски изготавливаются на основе натуральных компонентов и высококачестсвенных пигментов с добавлением консервантов, не
183 руб
Раздел: 7 и более цветов
Коврик для запекания, силиконовый "Пекарь".
Коврик "Пекарь", сделанный из силикона, поможет Вам готовить вкусную и красивую выпечку. Благодаря материалу коврика, выпечка не
208 руб
Раздел: Коврики силиконовые для выпечки

Реферат: Эвристические методы решения творческих задач Эвристические методы решения творческих задач

Эвристический диалог "мозговой атаки" базируется на ряде психологических и педагогических закономерностей, но прежде чем их сформулировать, следует кратко остановиться на тех теоретических предпосылках, которыми руководствовались создатели этого метода. Изобретателями было отмечено, что коллективно генерировать идеи эффективнее, чем индивидуально. В обычных условиях творческая активность человека часто сдерживается явно и не явно существующими барьерами (психологическими, социальными, педагогическими и т. д.). Эту ситуацию удобно выразить при помощи модели "шлюза". Творческая активность человека чаще всего потенциально сдерживается, как вода при помощи "шлюза". Поэтому нужно открыть "шлюз", чтобы ее высвободить. Жесткий стиль руководства, боязнь ошибок и критики, сугубо профессиональный и слишком серьезный подход к делу, давление авторитета более способных товарищей, традиции и привычки, отсутствие положительных эмоций - все это выполняет роль "шлюза". Диалог в условиях "мозговой атаки" выступает в роли средства, позволяющего убрать "шлюз", высвободить творческую энергию участников решения творческой задачи.

Реферат: Решение задач линейного программирования симплекс методом Решение задач линейного программирования симплекс методом

Линейное программированиеЛинейное программирование - математическая дисциплина, посвящённая теории и методам решения задач об экстремумах линейных функций на множествах -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств. Линейное программирование является частным случаем выпуклого программирования, которое в свою очередь является частным случаем математического программирования. Одновременно оно - основа нескольких методов решения задач целочисленного и нелинейного программирования. Одним из обобщений линейного программирования является дробно -линейное программирование. Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким образом геометрически формулировать и доказывать их. Математическая формулировка задачи линейного программирования Нужно определить максимум линейной целевой функции (линейной формы)при условиях Иногда на xi также накладывается некоторый набор ограничений в виде равенств, но от них можно избавиться, последовательно выражая одну переменную через другие и подставляя её во всех остальных равенствах и неравенствах (а также в функции f).

Реферат: Решение прикладных задач численными методами Решение прикладных задач численными методами

Реферат: Аналитический метод в решении планиметрических задач Аналитический метод в решении планиметрических задач

То есть аналитическая геометрия имеет своей задачей изучение свойств геометрических объектов при помощи аналитического метода. В основе этого метода лежит так называемый метод координат, впервые систематически примененный Декартом. Основные понятия геометрии (точки, прямые линии и плоскости) относятся к числу так называемых начальных понятий. Эти понятия можно описать, но всякая попытка дать определение каждого из этих понятий неизбежно сведется к замене определяемого понятия ему эквивалентным. С научной точки зрения логически безупречным методом введения указанных понятий является аксиоматический метод, в развитии и завершении которого величайшая заслуга принадлежит Гильберту. Аксиоматический метод закладывает фундамент и для лежащего в основе аналитической геометрии метода координат. Ради простоты рассмотрим вопрос о введении координат на прямой. Возможность введения координат на прямой основывается на возможности установления взаимно однозначного соответствия между множеством всех точек прямой и множеством всех вещественных чисел.

Реферат: Методы решения логистических задач Методы решения логистических задач

СодержаниеВведение 1. Системный анализ 2. Кибернетический подход 3. Исследование операций 4. Прогностика 5. Методы решения логистических задач Заключение Литература Введение Методология - это учение о структуре, логической организации, методах и средствах деятельности. Современная теория логистики в концептуальном плане базируется на четырех методологиях: системного анализа (общая теория систем), кибернетического подхода (кибернетика), исследования операций, прогностики. Сформулируем логическую последовательность использования описанных научных направлений при анализе, синтезе и оптимизации ЛС. ЛС являются искусственными, динамическими и целенаправленными. Для таких систем актуальны проблемы управления, задачи анализа и синтеза управляемых и управляющих систем, которые могут быть изучены, решены и смоделированы методами кибернетики. Если речь идет о системе управления, то возникают задачи выбора оптимального решения и оценки эффективности управления. Решение этих задач обеспечивают методы исследования операций.

Реферат: Эвристические методы решения творческих задач Эвристические методы решения творческих задач


Решение многокритериальных задач методом анализа иерархий. Учебное пособие Российская академия государственной службы (РАГС) Павлов А.Н.
Дано представление о процессе сбора и обработки материалов от экспертов, которые высказывают свои суждения по проблеме, используя метод парного сравнения при оценивании возможных вариантов.
162 руб
Решение транспортных задач с помощью Excel программирования на VBA МарТ Сарафанова
Предназначено для студентов ВУЗов специальности 2400 «Организация перевозок и управление на автомобильном транспорте», студентов автотранспортных техникумов и колледжей, работников в области автомобильного транспорта.
84 руб
Аналитическая геометрия: Учебное пособие для средней школы - 256 с. Метод координат, решение геометрических задач с помощью алгебры: М:Аквариум Шипачев В.С.
32 руб
Примеры, задачи, кейсы Методы оптимизации управления и принятия решений: Дело Варюхин С.Е.,Зайцев М.Г.
Для менеджера она является своеобразной базой данных для создания собственных количественных моделей и применения их в практике своей компании.
875 руб
Методы оптимизации управления и принятия решений: примеры, задачи, кейсы Дело Зайцев М.Г.
Книга содержит более 300 задач и кейсов по курсу «Количественные методы в менеджменте», с неизменным успехом читавшемуся авторами на протяжении 8 лет на различных программах МВА и Executive MBA в Институте бизнеса и делового администрирования АНХ при Правительстве РФ, Высшей школы менеджмента ГУ-ВШЭ, других институтов, а также на различных корпоративных программах.
875 руб
Решение технико-экономических задач методом функционально-стоимостного анализа: Учебное пособие нет серии ISBN 5-276-00848-5 изд-во МГИУ Булаев Н.И.
149 руб
Методы линейного программирования. Часть 2. Транспортные задачи Либроком Габасов Р.
При исследовании этих задач значительно больше внимания, чем в общем случае, уделяется безопорным методам.
238 руб
Метод граничных состояний в задачах теории анизотропной упругости. Решение краевых задач теории упругости для анизотропных тел Книга по Требованию Дмитрий И.
Метод граничных состояний применен для решения данных задач для тел различных геометрических конфигураций.
1894 руб
Методы оптимизации управления и принятия решений: примеры, задачи, кейсы. Учебное пособие Учебники Президентской Академии Дело Зайцев М.Г.
Книга адресована студентам, слушателям различных программ МВА и как материал для самостоятельных занятий.
1043 руб

Молочный гриб можно использовать для похудения, восстановления микрофлоры, очищения организмаМолочный гриб можно использовать для похудения, восстановления микрофлоры, очищения организма

(495) 105 99 23

Сайт char.ru это сборник рефератов и книг