(495)
105 99 23



оплата и доставка

оплата и доставка char.ru



Книги интернет магазинКниги
Рефераты Скачать бесплатноРефераты



Осознанность, где взять счастье

РЕФЕРАТЫ РЕФЕРАТЫ

Разлел: Компьютеры и периферийные устройства Разлел: Компьютеры и периферийные устройства

Экспериментальное обнаружение электромагнитных волн Генрихом Герцем

найти еще ...
Комплект таблиц. Излучение и прием электромагнитных волн (8 таблиц) Учебные таблицы. Физика Спектр (пособия)
Излучение электромагнитных волн.
1861 руб
Дифракция электромагнитных волн на незамкнутых конических структурах Физматлит Дорошенко В.А.
1104 руб

Герц углубляется также в старые научные журналы, например знаменитый лейпцигский «Ac a Erudi orum», первый научный журнал Германии, основанный в 1682 году и просуществовавший столетие. К числу сотрудников этого журнала принадлежал Лейбниц. Под влиянием этой литературы Герц высказал мысль: «Мне действительно становится иногда жаль, что я не жил в то время, когда было так много нового. Собственно, и сейчас достаточно неизвестного, но я не думаю, что сейчас можно легко найти что-либо такое, что могло бы преобразовать всю систему воззрений, как в то время, когда телескоп и микроскоп были еще новинками». Это мнение Герца, как заметил Лауэ по поводу этой выдержки из письма, было основательным образом опровергнуто им самим. Для того чтобы слушать лекции всемирно известных специалистов по математике и экспериментальной физике, Гельмгольца и Кирхгофа, и закончить образование под их руководством, Герц в октябре 1878 года становится студентом Берлинского университета, то есть именно в тот момент, когда юный Планк вновь покидает Берлин и возвращается в Мюнхен. В одном из писем родителям Герц образно описывает кипучую жизнь, с которой он столкнулся в столичном университете империи: «Профессора читают лекции в слишком маленьких аудиториях (предполагаю, что больших нет), так что весьма часто все бывает занято, все до последнего места и многие еще стоят; в десять через вестибюль университета приходится проталкиваться как у железнодорожной кассы на троицу». Гельмгольц, «первый естествоиспытатель Германии», как позднее называл его Герц, к тому времени уже семь лет трудился в Берлине, успешно открывая не только новые законы природы, но и таланты в естествознании. Верным глазом ученого он распознал блестящие способности молодого гамбуржца и всячески содействовал их развитию, не навязывая ему своего образа мысли. Для дальнейшего пути Генриха Герца как физика это имело большое значение, и он сохранил благодарность своему учителю на всю жизнь. «Уже во время элементарных практических работ, проведенных им, я видел, что имею дело с учеником необычайной одаренности», – сообщал Гельмгольц. Когда в конце летнего семестра перед Гельмгольцем встала задача предложить тему конкурсной работы по физике для студентов философского факультета, он выбрал вопрос по электродинамике и был рад, что Герц заинтересовался работой. Поставленная Гельмгольцем задача касалась специальной проблемы движущегося электрического заряда. В этой области в то время – прежде всего в Германии – господствовали еще механистические воззрения Вильгельма Вебера. Вебер возвращал электрические явления назад, к силам дальнодействия, распространяющимся с бесконечной скоростью в невесомом электрическом флюиде. Он приписывал подвижному электричеству особый вид инерции, какая свойственна твердым телам. Предложенный Гельмгольцем эксперимент должен был выяснить, обладает ли на самом деле электрический заряд, движущийся по проводникам, как ток, подобной инерцией. Таким образом, конкурсный вопрос опосредованно служил усилиям экспериментальной проверки теории электричества Фарадея – Максвелла, в правильность которой Гельмгольц склонен был верить.

Вплоть до поздней осени 1884 года на первом плане стояли занятия электродинамикой. Все время встречаются записи о том, что Герц «размышлял» над вопросами электродинамики. В их числе появляется заметка: «Упорно размышлял над электродинамикой». Наряду с этим он интересовался также трудами Давида Фридриха Штрауса, посвященными критике религии, и читал переписку между Гёте и Шиллером, Гауссом и Шумахером. Но Герц не мог быть полностью удовлетворен своей деятельностью в Киле. «Очень плохое настроение», – отметил он в дневнике 29 октября 1884 года. Предоставление обещанной профессуры оттягивалось от семестра к семестру. Из-за этого у него не было прочной основы для существования. Но большей частью его угнетало, по-видимому, отсутствие возможности экспериментировать в хорошо оборудованном институте, к чему он привык в свои берлинские годы. Маленькая частная лаборатория, которую он начал оборудовать самодельными приборами в подсобном помещении своей квартиры, могла быть лишь паллиативом. Герц был прирожденным экспериментатором. Несмотря на свои ярко выраженные математические способности и живые теоретические наклонности, он не чувствовал себя счастливым, занимаясь математической физикой. Он тосковал, как писал Планк, по своему любимому делу – эксперименту. Поэтому он с радостью принял осенью 1884 года приглашение на должность ординарного профессора физики в Высшую техническую школу в Карлсруэ, где в его распоряжении был институт с хорошим экспериментальным оборудованием. В марте 1885 года Герц переселяется в город, который в последующие четыре года стал ареной его великих открытий и местом рождения его мировой славы. «Утром осмотрел институт в политехникуме и остался доволен», – значится в дневнике 30 марта 1885 года. Двумя днями позднее он отмечает: «В институт доставлен оптический шкаф. Найдена подходящая квартира». Во всяком случае, было покончено, как он писал, с «безмятежным досугом приват-доцента». Он должен был заниматься всевозможными институтскими и административными делами. Подготовка к лекциям, экзамены и факультетские обязанности всякого рода мешали ему заниматься собственной научной работой. В июне 1885 года он жаловался в письме своим родителям: «Неужели я тоже стану одним из тех, кто, получив профессуру, перестает что-либо создавать». Дневник верно отображает жизнь молодого профессора. Среди заметок о служебных делах, о ссоре с учеником механика, разбившим диск большой электростатической машины, о теоретических вопросах, короткая и деловая – в стиле сообщений о результатах физических опытов – запись о том, что он помолвлен с дочерью одного из коллег. Через год после своего переселения в Карлсруэ, летом 1886 года, Герц женится. Вскоре после этого, в октябре 1886 года, начинаются в «удивительном сплетении заслуг и счастья», как писал Планк, те классические эксперименты, которые создали научную славу Генриха Герца. Их непосредственным исходным пунктом – подобно открытию Эрстеда в 1820 году – было случайное наблюдение во время подготовки и проверки учебного эксперимента. При экспериментировании с электрическими разрядами Герц заметил искрение одной из двух близко лежавших друг подле друга изолированных спиралей.

Весной 1889 года Герц прибыл в Бонн как ординарный профессор физики. Здесь он стал преемником Рудольфа Клаузиуса, который заслужил мировое признание своими исследованиями в области термодинамики. В распоряжение Герца был предоставлен красиво расположенный жилой дом, которым владел его предшественник. «То, что в доме жил один из самых знаменитых в моей науке людей, конечно, привлекательно для меня и всех физиков, которым случается меня посещать», – писал он своим родителям. Сан возле дома был очень удобен как место отдыха для него и как площадка для игр двух его маленьких дочерей. «Сегодня я все время до обеда был в саду, который сейчас весь наполнен ароматом», – гласит запись в дневнике в мае 1892 года. За несколько дней до этого он писал в дневнике, что устроил для детей большую песочницу с «волшебной пещерой», которая освещалась по вечерам. Университет Бонна стал последним местом деятельности исследователя. Поначалу ему пришлось преодолеть множество трудностей, чуть ли не больше, чем четыре года назад в Карлсруэ. Институт, занимавший тесные помещения, нужно было расширить и оснастить новыми приборами. Имеющаяся аппаратура большей частью не была готова к употреблению, так как Клаузиус в последние годы своей преподавательской деятельности не разрешал использовать приборы, щадя их. «Много работы с лабораторией, нет возможности идти дальше. Очень утомлен и несчастен». Так повествует дневник в конце летнего семестра 1889 года. Следуя приглашению, Герц выступает в сентябре 1889 года на 62-м заседании Общества немецких естествоиспытателей и врачей в Гейдельберге с докладом «Об отношении между светом и электричеством». Подготовка этого доклада, предназначенного для широкой аудитории, доставила Герцу много хлопот. Временами он был близок к тому, чтобы взять назад данное обещание. «Я так несчастен оттого, – писал он своим родителям, – что нагрузил себя докладом в Гейдельберге. Лечусь тяжелой, неприятной работой, затрачиваю на него массу времени, а то, что я получаю в результате, по моему мнению (по моему искреннему мнению), для любителя непонятно, для специалиста тривиально, мне самому противно. К сожалению, на этот раз уклониться нельзя, необходимо сказать что-либо». Эти сомнения не подтвердились. Доклад был принят громкими аплодисментами. Гельмгольц выразил удовлетворение по поводу выступления своего ученика. Даже такой своеобразный и требовательный слушатель, как Вильгельм Оствальд, в автобиографии, написанной спустя сорок лет, с признательностью упомянул «большую и в высшей степени выразительную речь», в которой Герц сообщал «о доходящем до мельчайших деталей совпадении света и исследованных им быстрых электрических колебаний». Это было действительно мастерское изложение сложных физических взаимозависимостей в общедоступной форме. Доклад со всей очевидностью обнаружил, что Герц не сомневался в правомерности господствовавшей тогда гипотезы светового эфира. Более того, исследование «эфира» казалось ему даже основным делом физики. Он полагал, что по примеру греческих натурфилософов можно спросить, «разве почти все существующее не создано из эфира?».

Поиск Никола Тесла. Ложь и правда о великом изобретателе

Комитет не простил Тесле оскорбительных намеков и провалил его кандидатуру на выборах 1937 года, когда ученого уже действительно выдвинули на премию. Многие исследователи жизни и работ Теслы сообщают нам красивую, но совершенно ложную легенду. Якобы и Тесла, и Эдисон сами отказались от премии, поскольку не хотели разделить ее между собой. Сообщают также и о взаимной ненависти ученых. Однако, как уже не раз говорилось, Теслу никто и не выдвигал, а Эдисон никогда не заявлял о снятии своей кандидатуры и просто не собрал нужного количества голосов членов Нобелевского комитета. И ненависти тоже не было, и об этом мы тоже написали. Конкуренция была, но не такого устрашающего накала. Хотя ни в том 1915 году, ни позже Нобелевской премии не получил и Эдисон, критику Теслы нельзя назвать полностью справедливой. Известно, что электромагнитные волны открыл Герц, радио, изобрел неизвестно кто передачу электромагнитных волн на очень короткое расстояние наблюдали еще в середине XIX века, а довели радио «до ума» в конце этого в начале следующего XX века с десяток ученых, включая Теслу. Маркони и Попова

Реферат: Экспериментальные исследования электромагнитной индукции (№28) Экспериментальные исследования электромагнитной индукции (№28)

Поиск Никола Тесла

Это уже больше не отдельные независимые вопросы, а комплексная область». И далее с большой похвалой Доливо-Добровольский отзывается об исследованиях Теслы. Другой цикл работ, проведенный Николой Теслой, относится к токам высокой частоты, беспроволочной передаче электроэнергии. Здесь необходимо сказать несколько слов об общей обстановке, в которой проводились опыты по беспроволочной передаче электроэнергии. В 1873 году Максвелл опубликовал свой знаменитый трактат об электричестве и магнетизме. Этим было завершено построение общей теории электромагнитных явлений. В дальнейшем уже не было обнаружено ни одного факта, который бы не укладывался в рамки теории Максвелла. В 1889 году вышла в свет работа Генриха Герца «Силы электрических колебаний в соответствии с теорией Максвелла». В ней был дан количественный расчет мощностей, передаваемых при помощи электромагнитного излучения. Экспериментальные и теоретические исследования Герца окончательно установили, что электрическая энергия может быть передана без проводов тремя различными способами: электрической индукцией, электромагнитной индукцией и, наконец, электромагнитной волной

Реферат: Экспериментальное исследование взаимодействия упругих волн в акустическом резонаторе. Экспериментальное исследование взаимодействия упругих волн в акустическом резонаторе.

Эксперименты проводились со стержневым резонатором диаметром d = 2.5см и длиной L = 28см. Блок-схема измерительной установки представлена рис.2. Рис.2 Рис.3 Пьезокерамический излучатель слабой волны (2) был приклеен к торцу образца (1) и массивному (М= 2 кг) титановому концентратору (4), являющемуся излучателем мощной волны накачки (ее минимальный уровень превышал максимальный уровень слабой волны примерно на 30 дБ), так что граничное условие на этом торце резонатора было близко к условию на абсолютно жесткой поверхности. К другому концу стержня приклеивался пьезоакселерометр (6) достаточно малой массы, так что эта граница была близка к акустически мягкой. Для таких резонаторов спектр собственных частот определяется следующим выражением: f =c0(2 -1)/4L, где c0 - скорость продольной волны в стержне, = 1,2 - номер продольной моды резонатора. С пьезоакселерометра сигнал поступал на спектроанализатор (10) для измерения амплитуды накачки, а также через режекторный фильтр (9), подавляющий сигнал на частоте накачки на 30 дБ, на селективный вольтметр (8) и осциллограф (7), где производилось измерение уровня слабого сигнала.

Поиск История физики

Она привела к простому, у многих тел эмпирически наблюдающемуся отношению между показателем преломления и диэлектрической постоянной. Кроме того, она содержит в себе, как показал в 1875 г. Гендрик Антон Лорентц (1853-1928), полную теорию для предложенных уже Френелем формул интенсивности при отражении и преломлении; последние только экспериментально подтверждались, но не могли быть объяснены теорией упругости. Несмотря на ее преимущества, этой теории пришлось сражаться за свое признание три десятилетия - так велика была сила старых теорий, опирающихся на общее механистическое мировоззрение. После того как в 1888 г. Генрих Герц (1857-1894) обнаружил электромагнитные волны и показал, что они имеют все свойства света: преломление, отражение, интерференцию, диффракцию, поляризацию и ту же скорость распространения, что и у света, - новая теория одержала победу. Старый спор о том, происходят ли световые колебания в плоскости поляризации, как полагал Френель, или они, согласно Францу Нейману (1798-1895), перпендикулярны к ней, был решен теорией отражения Лорентца, а также опытом Отто Генриха Винера (1862-1927) со стоячими световыми волнами, показавшим, что колебания электрического поля совершаются перпендикулярно к плоскости поляризации, а колебания магнитного поля - в самой этой плоскости

Реферат: Диапазоны электромагнитных волн: Мириаметровые  волны (СДВ) Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)

Особенности распространения сверхдлинных волн. В диапазонах радиоволн с частотой менее 30 кГц для всех видов земной поверхности токи проводимости существенно преобладают над токами смещения, благодаря чему при распространении поверхностной волны происходит лишь незначительное поглощение энергии. Длинные волны хорошо дифрагируют вокруг сферической поверхности Земли. Оба эти фактора обусловливают возможность распространения сверхдлинных волн на расстояние порядка 3000 км. При этом для расстояния 500—600 км напряженность лектрического поля можно определять формулой Шулейкина-Ван-дер-Поля : Em = W а для больших расстояний расчет ведут по законам дифракции. Начиная с расстояния 300—400 км, помимо земной волны, присутствует волна, отраженная от ионосферы. С увеличением расстояния напряженность электрического поля отраженной от ионосферы волны увеличивается, и на расстояниях 700—1000 км напряженности полей земной и ионосферной волн становятся примерно равными. Суперпозиция этих двух волн дает интерференционную картину поля (рис 1.1). Рис. 1.1. Характер изменения напряженности электрического поля СДВ с расстоянием (Р =1 кВт) На расстоянии свыше 2000—3000 км земная и ионосферная волны не проявляются по отдельности.

Ручка "Шприц", желтая.
Необычная ручка в виде шприца. Состоит из пластикового корпуса с нанесением мерной шкалы. Внутри находится жидкость желтого цвета,
31 руб
Раздел: Оригинальные ручки
Горшок торфяной для цветов.
Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и
7 руб
Раздел: Горшки, ящики для рассады
Карабин, 6x60 мм.
Размеры: 6x60 мм. Материал: металл. Упаковка: блистер.
44 руб
Раздел: Карабины для ошейников и поводков

Реферат: Электромагнитные волны Электромагнитные волны

Для того, чтобы понять это, рассмотрим рис. 1, где показан земной шар и передающая антенна в увеличенном виде. На высоте от 40 до 500 км над Землей находится 1 ионосфера 0. Она состоит из очень разреженных воз- душных частиц, 1которые над действием солнечной радиации ионизированы. Степень этой ионизации зависит от многих факторов: день, ночь, лето, зима и т. д., которые влияют на прохождение радиоволн. Например, днем концентрация ионов больше и в ионосфере формируется несколько слоев, а ночью концентрация уменьшается, и эти слои выражены слабее. Главное свойство ионосферы - это возможность, благодаря наличию заряженных частиц, 1 отражать 0 радиоволны определенной длины волны. Длинные волны сильно поглощаются ионосферой и поэтому основное значение имеют приземные волны, которые распространяются, огибая зем- лю. Поскольку они распространяются в низких и плотных слоях атмосферы, их интенсивность уменьшается сравнительно быстро по мере удаления от передатчика. Поэтому длинноволновые передатчики должны иметь большую мощность.

Реферат: Электромагнитные волны Электромагнитные волны

Фундаментальные законы природы могут дать гораздо больше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Максвеллом законы электромагнетизма. Среди бесчисленных, очень интересных и важных следствий, вытекающих из максвелловских законов электромагнитного поля, одно заслуживает особого внимания. Это вывод о том, что электромагнитное взаимодействие распространяется с конечной скоростью. Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д. Перемещение заряда вызывает, таким образом, «всплеск» электромагнитного поля, который, распространяясь, охватывает все большие области окружающего пространства. Максвелл математически доказал, что скорость распространения этого процесса равна скорости света в вакууме. Представьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой.

Реферат: Двойное лучепреломление электромагнитных волн. Двойное лучепреломление электромагнитных волн.

Основываясь на том, что электромагнитная волна является поперечной, возможно наблюдение явлений, связанных с определенной ориентацией векторов и в пространстве. 2. Поляризация света. Виды поляризованного света. Для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов, характеризующих электромагнитную волну. Обычно все рассуждения ведутся относительно светового вектора-вектора напряженности электрического поля (при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества). Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис. 3, а; луч перпендикулярен плоскости рисунка). рис. 3 В данном случае равномерное распределение векторов объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов -одинаковой (в среднем) интенсивностью излучения каждого из атомов.

Реферат: Экспериментальные исследования электромагнитной индукции. Экспериментальные исследования электромагнитной индукции.

Реферат: Анализ и решение проблемы переноса энергии волнами электромагнитного поля Анализ и решение проблемы переноса энергии волнами электромагнитного поля

Поскольку суть электромагнетизма – это взаимодействие ЭМ поля с материальной средой, то его анализ обычно сводится к стремлению описать энергетику ЭМ явлений. Обратимся и мы к закону сохранения энергии, который, согласно (2), для среды идеального диэлектрика запишется в виде: . (3) Для анализа нам вполне достаточно рассмотреть, как выполняется выражение (3) для плоской монохроматической ЭМ волны, полевые компоненты которой, согласно волновым решениям уравнений Максвелла, в свободном пространстве без потерь при распространении совершают синфазные колебания:  и . Подставляя эти выражения в соотношение (3), окончательно получаем: . (4) Здесь весьма странно то, что, согласно , равные по величине электрическая  и магнитная  энергии хотя и распространяются совместно, но без какой-либо видимой связи друг с другом. А потому необходимо напрашивается вывод об объективности существовании именно чисто электрической и магнитной энергий, но при явном отсутствии физических оснований их взаимосвязанного единства в виде ЭМ энергии.

Реферат: Поляризация электромагнитной волны Поляризация электромагнитной волны

Концы векторов , относящихся к различным точкам оси z, расположены при этом на левовинтовой круговой спирали (рис.3). Если положить в (1) и , то вместо (9) имеем: , . (13) и аналогичным путем вновь получаем однородную плоскую волну с круговой поляризацией. Однако, у этой волны в точке вектор равномерно вращается в направлении против часовой стрелки (рис.4), а направление движения волны и вращение вектора образуют левовинтовую систему. В момент времени концы векторов на оси z расположены на правовинтовой круговой спирали (рис.4). Рис.4. Волна левой круговой поляризацииУсловимся называть поляризацию правой (левой), если в фиксированной точке направление вращения вектора образует с направлением распространения волны правовинтовую (левовинтовую) систему. Плоскость поляризации волны, которая поляризована по кругу, в каждой точке пространства равномерно вращается с течением времени. Эллиптически поляризованной называют волну, у которой вектор вращается, описывая за время одного периода своим концом эллипс (рис.5). Однородная плоская волна с эллиптической поляризацией получается в результате суперпозиции двух линейно поляризованных волн со взаимно перпендикулярными векторами во всех случаях, когда не выполняются рассмотренные выше условия возникновения линейной и круговой поляризаций.


Шкала электромагнитных волн: Наглядное пособие Дрофа
435 руб
Проблемы дифракции и распространения электромагнитных волн: Монография Изд. 2-е ЛКИ Фок В.А.
Рекомендуется физикам-теоретикам, геофизикам, специалистам в области связи, студентам и аспирантам естественных и технических вузов.
427 руб
Таблица пластиковая. Физика. Шкала электромагнитных волн Учебные таблицы Спектр
303 руб
Таблица виниловая. Шкала электромагнитных волн (200x60 см) Учебные таблицы. Физика Спектр (пособия)
2093 руб
Шкала электромагнитных волн. Плакат Наглядные пособия. Физика Дрофа Власова И.Г.
32 руб
Шкала электромагнитных волн. Плакат Наглядные пособия. Физика Дрофа
1286 руб
Наглядное пособие. Шкала электромагнитных волн Наглядные пособия. Физика Дрофа, ДиК
598 руб
Теория рассеяния электромагнитных волн в угловых структурах Наука Смирнов С.Н.
Изложены основы используемого для решения дифракционных задач метода Зоммерфельда-Малюжинца, описан математический аппарат, позволяющий учитывать влияние падающего поля, радиофизические характеристики рассматриваемых структур на характеристики рассеяния рассматриваемых структур.
210 руб
Цифровое запоминание и воспроизведение радиосигналов и электромагнитных волн Радиоэлектронная борьба. Вузовская книга Добыкин В.Д.
Может служить учебным пособием для студентов радиотехнических вузов и факультетов.
822 руб

Молочный гриб можно использовать для похудения, восстановления микрофлоры, очищения организмаМолочный гриб можно использовать для похудения, восстановления микрофлоры, очищения организма

(495) 105 99 23

Сайт char.ru это сборник рефератов и книг